
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

APPENDIX

A. 3D Representation Details

Given image(s) I = {Ii}i=0,1,...,M of one or more RGB-
D camera(s), we extract 2D patch-level features Wi by
MaskCLIP [25], including visual patch-level features Wf

i and
vision-language similarity information Ws

i denoting cosine
similarities between language embeddings and Wf

i .
We generate a 3D point cloud p within the workspace using

the camera parameters. For each point pj of p, we project it
back to the ith camera viewpoint as the pixel ui

j , and get its
visual feature f i

j by interpolation:

f i
j = Wf

i [u
i
j] (1)

Following [18], we compute weights for each camera ac-
cording to the visibility and distance of pj relative to the ith
camera. We denote the distance from pj to the ith camera
viewpoint as li, and compute the depth by interpolating the
corresponding depth image Idi as l′i = Idi [u

i
j]. Then the

truncated depth difference is defined as:

di = li − l′i, d′i = max(min(di, µ),−µ), (2)

where µ = 0.02 represents the truncation threshold for the
Truncated Signed Distance Function (TSDF). The visibility
of pj in the ith camera viewpoint can be represented as
vi = 1di<µ. Here 1 is the indicator function. We compute
the weight for the ith camera viewpoint as:

βi = exp

(
min (µ− |di|, 0)

µ

)
. (3)

where βi decays as |di| increases. Then, we can obtain
the semantic feature fj by fusing features from M camera
viewpoints:

fj =

∑M
i=1 βivif

i
j

ϵ+
∑M

i=1 vi
(4)

where ϵ = 1× 10−6 is to avoid numeric issues.
Similarly, we can get the similarity value sj for pj in the

same way upon Ws
i . Finally, we get a 3D feature cloud f =

{fj} indicating the visual features and a 3D similarity cloud
s = {sj} indicating the task-relevant information.

B. Data Collection Details

Language Instructions. During each rollout of data col-
lection, we randomly sample a language template along with
keywords (target for pick tasks, reference and relation for
place tasks) to form a complete language instruction. For pick,
there are five language templates: “Give me the {target}”,
“I need a {target}”, “Grasp a {target} object”, “I want a
{target} object”, “Get something to {target}”, while there are
three for place: “Put it {relation} the {reference}”, “Place this
{direction} the {reference}”, “Move the object {direction}
the {reference}”. There is a total of 66 object models for
data collection, with 36 language keywords categorized into
three types: labels, general labels, and attributes. For spatial
relations, there are 6 choices for “on” or “around” relations.

Model-based Experts. We collect data with model-based
expert planners. The model-based pick expert planner selects

(a) on (b) around

Fig. 11. Example generated place regions for (a) “on” relation and (b)
“around” relation relative to the red bowl.

the grasp nearest to the target objects from candidates gener-
ated by GraspNet [24]. The model-based place expert planner
determines valid place regions based on the reference object
and the relation. Specifically, we first obtain object region
proposals from the mask image in Pybullet [69], where each
pixel donates the index of the object visible in the camera.
Object regions are identified as bounding boxes of pixels
with the same index, and regions whose size is smaller than
5× 5 are discarded. Then the valid place region is generated
within the reference object for the “on” relation, or around
the reference object for the “around” relation. Note that the
generated “around” region should not overlap with any object
regions. Fig. 11 shows example place regions for the “on” and
“around” relations.

Visual Representation Filtering. We exclude the table
points from the visual representations (i.e. 3D feature cloud
and 3D similarity cloud) for pick tasks while retaining them
for place tasks. Specifically, table points are removed by
height filtering of the point cloud in world coordinates. This
is because the policy does not require the feature information
of the table for pick action planning, and the filtering helps
the policy focus on the objects.

C. Simulation Experiment Details

Test Case Visualizations. We collect test cases with 66
seen objects and 17 unseen objects. More example test cases
across all categories are presented in Fig. 12.

Baseline Implementations. For the two neural field based
pick policies, we train the feature fields for each step of action
planning and select the grasp pose with the maximum query
score of language instructions from a given set generated by
GraspNet [24]. For language queries, we use the object as
the positive query (e.g. “pear”, “something to drink”), empty
string as the negative query, and “body” as the part query.

For LERF-TOGO [19], we strictly follow the training and
querying codes1 provided by the authors. For input data, there
are RGB-D images of 53 views including the 3 used by
ours and 50 additional different views to provide more visual
information, with a format aligned to their example.

For GraspSplats [14], we used the open-sourced codes2

for static scene grasping, as it is claimed in the paper to
achieve better success rates than dynamic scene grasping. The
ground-truth poses for each viewpoint are obtained from the

1https://github.com/lerftogo/lerftogo
2https://github.com/jimazeyu/GraspSplats

https://github.com/lerftogo/lerftogo
https://github.com/jimazeyu/GraspSplats

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Pl
ac

e-
U

ns
ee

n
Pi

ck
-S

ee
n

Grasp the red fruit,
move the object in the red bowl.

Pi
ck

-U
ns

ee
n

Pl
ac

e-
Se

en
Pi

ck
Pl

ac
e-

Se
en

Pi
ck

Pl
ac

e-
U

ns
ee

n

Grasp a round object. Get something to eat. Give me a cup. I need a fruit. Give me the pear.

Get something for cleaning. I need a container. Give me the suger.I need a suger. Give me the box.

Put it near the box. Put it on the cup. Move the object around the plum.Place this near the pear. Put it on the red mug.

Move the object close to
the black marker.

Move the object around
the gelatin box.

Put it next to the
yellow bowl.

Put it beside the shampoo. Place this near the suger.

I need a cup,
put it around the box.

Give me a cup,
move the object near the racquetball.

Give me the suger, move the object
surrounding to the small clamp.

I need a suger,
place this in the yellow bowl.

I want a white cuboid,
put it around the small clamp.

Fig. 12. More example test cases in simulation. The target objects or reference objects are labeled with stars.

simulation, and written directly to the COLMAP [76] database
as required. We run COLMAP for point cloud initialization
with ground-truth camera poses. To investigate the influence
of image input, we test Graspsplats with 23 view RGB, 3
view RGB-D, and 23 view RGB-D supervision respectively,
as shown in Table VII. In these experiments, the input images
contain the 3 input views used to evaluate our method. It is
worth noting that with the default parameters, GraspSplats
fails in most of the cases to select grasp poses because its
default distance threshold of 0.02m excludes most grasp poses
generated by GraspNet. To address this, we increased the
distance threshold to 0.08m.

In the original implementation2, GraspSplats first queries

for the object, then crops the point cloud using a hard-
coded workspace limit. This can result in failures when the
queried object lies outside the workspace, leaving the cropped
point cloud devoid of the target. To mitigate this issue, in
Table VII we first crop the point cloud and then query the
object, ensuring the target remains within the workspace limit.
Therefore, the results of 23 RGB images in Table VII are better
than others, which avoids some failures of the queried object
outside the workspace.

We analyze failure cases of GraspSplats and identify several
key issues. A portion of failures stemmed from the collisions
with other objects that cause the target object to drop from
the gripper. Also, although GraspSplats can correctly segment

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

TABLE VII
RESULTS OF GRASPSPLATS WITH DIFFERENT INPUTS

Data Seen Unseen

23 RGB 68.0/1.89 31.3/2.19
3 RGB-D 55.0/3.48 34.6/1.36

23 RGB-D 58.0/2.05 37.3/1.667

* Metrics are presented as Task Success Rate / Planning Steps.

the queried object, the selected grasp point might be grasping
other surrounding objects since objects are closely packed in
the clutter. Additionally, GraspSplats is more sensitive to typos
in language instructions, which are included in the test cases.

	Appendix
	3D Representation Details
	Data Collection Details
	Simulation Experiment Details

